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Symmetries of Lagrangians and of their equations of motion 

Sergio Hojman 
Centro de Estudios Nucleares, Universidad Nacional Autonoma de Mexico, Circuit0 
Exterior, CU, 04510 Mexico, DF 

Received 26 August 1983, in final form 3 January 1984 

Abstract. A new kind of Lagrangian symmetry is defined in such a way that the resulting 
set of Lagrangian symmetries coincides with the set of symmetries of its equations of 
motion. Several constants of motion may be associated to each of the new symmetry 
transformations. One example is presented. 

1. Introduction 

The subject of symmetries and associated constants of motion plays a prominent role 
in physics. If a physical system may be described in terms of a Lagrangian it is 
customary to study the symmetries of the Lagrangian to get information about (at least 
some of)  the constants of motion associated to the dynamical problem. One of the 
most useful tools to explore Lagrangian symmetries and construct associated constants 
of motion is the very well known theorem due to Noether (Noether 1918, Hill 1951, 
Lovelock and Rund 1975, Sudarshan and Mukunda 1974) which, in addition to 
providing a simple way to construct a constant of motion for each symmetry transforma- 
tion, constitutes the starting point for building gauge theories (Utiyama 1956, Abers 
and Lee 1973) which so successfully describe fundamental interactions. 

Much discussion has been devoted to the subject (see e.g. Havas 1973) and there 
are still some points which seem to remain unclear. This article is devoted to one of 
them, namely, the relationship between the symmetries of Lagrangians and those of 
their equations of motion and the construction of the associated constants of motion. 

Even though the discussion about this subject is meaningless unless the concept 
of a symmetry transformation is clearly defined, it can be safely said, before going 
into details, that the general belief seems to be that Lagrangians do, in general, possess 
less symmetry than their associated equations of motion. This is due to the fact that 
one is usually defining a Lagrangian symmetry to be one which satisfies the assumptions 
made in Noether’s theorem. 

Recently (Hojman 1980, Hojman and Harleston 1980, 1981, Hojman and Urrutia 
1981, Hojman and Shepley 1982) a new concept of Lagrangian symmetry, called 
s-equivalence, has been defined, generalising the one due to Noether, in such a way 
that several constants of motion may be associated to one symmetry transformation 
(Hojman and G6mez 1984). If s-equivalence is taken into account, the set of symmetries 
of Lagrangians and their equations of motion coincide, if the latter are first-order 
differential equations (Hojman and Zertuche 1984). 

In this article, we study the case of second-order differential equations. In this 
case, s-equivalence is not sufficient and a new kind of Lagrangian symmetry has to be 
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defined so that the set of symmetries of a Lagrangian and that of its equations of 
motion are the same. This new kind of symmetry can also be related to several constants 
of motion. This Lagrangian symmetry, which seems to have remained unnoticed u p  
to now, allows one to state that the symmetries of a Lagrangian and those of its 
equations of motion are the same. 

In § 2, a review of the different definitions of symmetry transformations for 
Lagrangians and equations of motion is presented. In § 3, recent results on the inverse 
problem of the calculus of variations, relevant for the purposes of this article, are 
summarised. In § 4, the new symmetry is defined and is related to constants of motion. 
This new definition is constructed so that the symmetries of Lagrangians and their 
equations of motion are the same. In § 5, one example is presented. Section 6 contains 
conclusions. 

Detailed calculations leading to some equations (marked with an asterisk in the 
main text) are given in an appendix. 

2. Definitions of symmetry transformations for Lagrangians and equations of motion 

Consider a quasilinear second-order differential system of equations 

M , ( d  qk ,  t)4' + Wlk, qk ,  t >  = 0,  i , j , k = l ,  . . . ,  n, (2.1) 

and assume further that Mi, is regular, i.e. 

det(MZJ) ' 
and therefore (2.1) is equivalent to 

where 

F ' =  - (M-' ) ' jN, .  

Consider an  infinitesimal transformation of coordinates 

q" = q' + &v'(qJ, qJ, t ) .  (2.5) 
The change of coordinates defined by (2.5) is said to be a symmetry transformation 

for (2.1) (or (2.3)) if it maps any solution of (2.1) into another solution of (2.1), i.e. if 
7'  satisfies (2.6) to within terms of order E ' ,  

a F '  a F '  
0 (2.6) _ _  a a  v'-,-vJ-ITJ= 

d t d t  aq d t  aq 

where 

d l d t  = F '  a / a q '  + q '  a l a q '  +a/at. (2.7) 
(Santilli 1978) equation (2.6) is sometimes called the equation of variations of (2.3) 
and its solutions are transformations of symmetry for (2.1) and (2.3). 

It is perhaps worthwhile mentioning that if C(q' ,  q',  t )  is a constant of motion for 
a given problem and  vL(qJ,  $, t )  satisfies (2.6) then C'(q',  j', t ) ,  

c '= (ac/aq')v'  +(ac/ag') a v ' l d t ,  

is also a constant of motion (Katzin and  Levine 1975). 
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Let us now turn our attention to Lagrangian systems and Noether's theorem. 
Consider the Lagrangian 

L = L(q', q ' ,  t )  (2.8) 

and its Euler-Lagrange equations 

E,L = 0 (2.9) 

where 

E ,L=(d /d t )  aL/dq'-aL/aq'. 

Define the infinitesimal change of coordinates and time 

q'l = q1 - Sq l (qJ ,  qJ, t), 

t '  = t - St (qJ ,  qJ, t). 
It is convenient to define 

a t  

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

Noether's theorem asserts that if SL can be written as a total time derivative, i.e. 

SLG -df(q', q', t)/dt, (2.14) 

then K is a conserved quantity 

K =(dL/a$')Sq' +[L-(dL/dq')4']St +f (2.15) 

The proof is straightforward using definition (2.15) and (2.9), (2.13) and (2.14). 
If 6q '  and S t  satisfy (2.14) it is usually said that (2.10) is a (Noetherian) symmetry 

In what follows we will briefly restate condition (2.14) in a slightly different (but 

Define the (acceleration dependent) Euler-Lagrange operator G, 

transformation for Lagrangian (2.8). 

equivalent) way. 

G, E -(d2/dt2) d / a i j '  + E ,  (2.16) 

where E,  is defined by (2.9), which will be very useful in 0 3. Of course, (2.9) can be 
rewritten as 

G,L = 0. (2.17) 

The (Noetherian) symmetry requirement (2.14) can then be re-expressed in words 

G,SL _= 0. (2.1 8)* 

Noether's theorem then relates one conserved quantity K defined by (2.15) to each 
(Noetherian) symmetry transformation defined by (2.10) and (2.14) (or (2.18)). 

Consider now a more general situation. Assume that the Euler-Lagrange derivatives 
of SL d o  not vanish identically but are a linear combination of the Euler-Lagrange 
derivatives of L 

by saying that the Euler-Lagrange derivatives of SL vanish identically, i.e. 

G,SL = A r J ( q k ,  q k ,  t)GJL. (2.19) 
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In this case, the Euler-Lagrange derivatives of SL vanish only when the equations 
of motion (2.9) or (2.17) are satisfied, 

GiSL[G,L=O = 0 (2.20) 

i.e. they vanish on the space of solutions of (2.9) or (2.17). If det A = 0, 6L is subordin- 
ated to L (Currie and Saletan 1966). If det A # 0, then SL and L are s-equivalent, i.e. 
their equations of motion have exactly the same solutions (Hojman and Harleston 
1981). The transformations defined by (2.1 1) and (2.12) satisfying requirement (2.19) 
are called non-Noetherian or s-equivalence symmetry transformations. 

The conservation laws associated to this symmetry transformation are 

Tr Ak = constant, k = 1,2, .  . . , (2.21) 

(Hojman 1980, Hojman and Harleston 1980, 1981, Hojman and Urrutia 1981, Hojman 
and G6mez 1984). Non-Noetherian symmetries associate several conserved quantities 
to one symmetry transformation (at most n of them are functionally independent). 

It is interesting to compare Noetherian and non-Noetherian symmetries of a given 
Lagrangian with those of its equations of motion. For simplicity, we take S t = O  for 
the time being, but in 0 4  the general case will also be discussed. It can be proved 
(see § 3) that Noetherian and non-Noetherian symmetries satisfy (2.6), where F' is 
defined by 

F' = -( W-' ) 'Jv ,  (2.22) 

with 

w, = a2L/ag' a$ = w,,, 

v, = (a2L/adag ' )@ +a2L/at ag'  -aL/aq'  

(we assume throughout this work that 

det W # O  

(2.23) 

(2.24) 

(2.25) 

and therefore W-'  exists). 
Conversely, it is easy to see that not all solutions to (2.6) are either Noetherian or 

non-Noetherian symmetry transformationns. 
A new kind of (Lagrangian) symmetry transformation has to be defined in order 

to have equivalence between symmetries of a given Lagrangian and those of its equations 
of motion. We review in 0 3 very recent results on the inverse problem of the calculus 
of variations which will be very useful to achieve this goal and construct conserved 
quantities associated to this new kind of symmetry. 

3. Lagrangians as linear combinations of their own Euler-Lagrange derivatives 

In this section we briefly review some of the results obtained recently in the inverse 
problem of the calculus of variations. This problem consists in studying the existence 
and uniqueness (or multiplicity) of Lagrangians for a given system of differential 
equations (or any other system which has the same general solution). 

Consider the equations 

q'  - F ' ( q J ,  $, t )  = 0. (3.1) 
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It has been shown (Hojman et af 1983) that any Lagrangian for (3.1) may be written 
as a linear combination of (the left-hand side of) equations (3.1) themselves 

i = qi, ii, t )  = g, t ) ( i i  - F ' )  (3.2) 

up to a total time derivative. 
Lagrangian (3.2) is unusual in the sense that it is acceleration dependent but as 

will be seen shortly, it differs from a usual (acceleration independent) Lagrangian by 
a total time derivative. 

The coefficients pi have to satisfy 

Yij = 0, (3.3) 

(d/dt)(dpi/dt +pkdFk/dqi) - pk aFk/aqi = 0, (3.4) 

det aG # 0, (3.5) 

yG = api/a$ -apj/aqi = --yji, (3.6) 

where 

cyij  = (a/a$)(dpi/dt +pk aFk/aqi) +apj/aqi, 

d/dt  = F' a/aq '  + q i  alas' +alar, 
and 

in order that 

G i i  = 0 (3 *9) 
be equivalent to (3.1). 

Condition (3.3) guarantees that no third-order derivatives appear in G i i  (there are 
no fourth-order derivatives anyway because L is linear in the accelerations). Condition 
(3.4) implies that 

GiL= -aG($ - Fj) (3.10) 

and therefore (3.9) are satisfied once (3.1) are. Condition (3.5) ensures that the converse 
is true, i.e. that (3.9) imply (3.1). 

Condition (3.3) can also be understood in a different way. In fact, (3.3) and (3.6) 
imply that a function g(qi, q',  t) exists such that 

pi = -ag/aq' 

and therefore the Lagrangian L, 
(3.1 1) 

L(q', qi,  t )  = &qi, di, i', t) +dg/dt,  (3.12) 

is acceleration independent. As a matter of fact, 

L(qi,  q i ,  t) = (d/dt)g(q', 4', t). 
Of course, 

(3.13) 

GiL= E,L= Gii .  (3.14) 
So the equations of motion for L can be written in the usual way. If one has the 

Lagrangian given in the form of (3.2) there is no need to compute g to get the equations 
of motion which can be written in the form (3.9) as long as conditions (3.3H3.5) are 
satisfied. 
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(3.15) 

(3.16) 

(3.17) 

PI, (d/dq')(dp,/dt f p k  d F k / a q l ) - ( i + + j ) .  (3.18) 

Furthermore, if (3.3) is satisfied all is such that 

Q r ]  = 'y,, 

and 

aal,/&jk = a a , k / a q ' .  

(3.19) 

(3.20) 

Equations (3.15)-(3.20) are the starting point in the approaches devised by Henneaux 
(1982) and Sarlet (1982). They have obtained further conditions from (3.15)-(3.20) 
which will not be needed in what follows. 

Define, for an acceleration independent Lagrangian L(q', q ' ,  t ) ,  W, and T,, by 

(3.21) 

(3.22) 

It is straightforward to prove, using (3.3), (3.4) and (3.13), that 

= - wu> (3.23) 

PIJ = ' I ]  (3.24) 

(for such an acceleration independent Lagrangian yI,, of course, vanishes). 
Suppose now that a symmetric, non-singular matrix S,, satisfying the conditions 

(3.15), (3.19) and (3.20) that a,, has to fulfil for a given Fk is known. It can be proved 
(Hojman et a1 1983) that if @' satisfies (2.6) then p,, 

PI = S,@, (3.25) 

is a solution of (3.4) and conversely, if p, fulfils (3.4) then @' satisfies (2.6). Of course, 

s, = w,, (3.26) 

is a possible choice if W, is defined in terms of a Lagrangian for which (2.22) is 
satisfied. If an acceleration dependent Lagrangian is used, then the choice 

s,, = a ,  (3.27) 

is also a good one. 
The function i' defined by 

ii = - FJ) (3.28) 

will be a new Lagrangian subordinated (or s-equivalent) to the original one only if 
condition (3.3) is met, i.e. if 

S , k  aek laq l  -(aek/aqi)sjk =o. (3.29) 
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4. A new Lagrangian symmetry 

Consider the variation of the Lagrangian 6L  given by 

6L = (aL/aq')6q' +(aL/aq')(sq ' ) '  ( 6 t  = 0).  (4.1) 

It is very well known that 6L  can be re-expressed in the following way, 

SL=((aL /dq ' )Sq ' ) ' -  6q'W,J(ijJ - F'), (4.2)* 

as can be easily checked (Sudarshan and Mukunda 1974). The matrix W ,  is defined by 
(3.21). Therefore, SL can be written (up  to a total time derivative) as a linear combination 
of the (left-hand side of the) equations of motion of L. The matrix W, satisfies (3.15), 
(3.19) and (3.20) by construction as was already mentioned at the end of 0 3. Therefore, 
6q'W1 fulfils condition (3.4) if and only if Sq' is a solution of the equation of variations 
(2.6). Furthermore, if 6q' satisfies 

(4.3) w , k  aaqk /aqJ  - ( a s q k / a q E )  wkJ = o 
SL is either subordinate to L (including the possibility of a total time derivative) or 
s-equivalent to L. 

Consider now the case in which S q '  does not satisfy (4.3). What happens then? 
Compute 

G,SL = C,' (4' - F')' + ( -A,' + Cl')( 4' - F') (4.4) 

where 

i.e. the Euler-Lagrange derivatives of SL are linear combinations of the left-hand side of 
the equations of motion of L and their time derivatives. In other words, the 
Euler-Lagrange derivatives of SL vanish when evaluated in the space of solutions of the 
equations of motion of L or 

G,SLIG,r=o = 0. (4.7) 
Condition (4.4) (or (4.7)) can be used to define a symmetry transformation for a given 

Lagrangian and includes Noether and s-equivalence symmetries, when (4.3) is fulfilled 
(C, = 0), and a new kind of symmetry when C, does not vanish. Condition (4.4) (or (4.7)) 
is such that taking it as a definition of Lagrangian symmetry, it makes symmetries of 
Lagrangians and those of equations of motion become equivalent. 

When C, vanishes the conservation laws are known and appear in § 2 .  In what 
follows, we will find the conservation law associated to the general case when C,j does 
not vanish. For this purpose it is useful to define I ,  ( a  = 1 , 2 , .  . . ,2n) ,  

I , - ,  = WjSqJ, (4.8) 
1, = -(dl ,+,/dt  + / k - ,  a F k / / a q ' > .  (4.9) 

It  is straightforward to prove that if I,,, satisfies (3.4) then fa  is such that 

d l a /d t  +I,, d f b / a . x a  = 0, a , b = 1 , 2  , . . . ,  2n, (4.10) 
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where 

x '  = q' X l + n  - - 4 ' 9  f' = X'+n,  f"" = F'(x' ,  X J + n ,  t ) ,  

d/d t  =f" a/ax4 +alar .  

c u b  = a14/axb - a lb /axu  = - -uba 

Define 

which satisfies 

dU4b/df = Ub,  ; t f ' / a X "  -U4, d r / a X b  

because of (4.10). As a matter of fact c a b  can also be written as 

where A and C are defined by (4.5) and (4.6) respectively and 

B, = - (al , /aq'  - a4/aq1). 

The regular 2n x 2 n  matrix Hab (= -Hb4), 

H = (  -w ") 0 ' 

(4.1 1) 

(4.12) 

(4.13) 

(4.14)* 

(4.15) 

(4.16) 

(4.17)* 

with W and T defined by (3.21) and (3.22) also satisfies (4.14). Therefore, 

Tr V k  = constant, k = 1,2, .  . . , (4.18) 

where 

V =  uH-' (4.19) 

because U and H satisfy (4.14) (see Hojman and Urrutia 1981). 
We have hence found several conservation laws associated to the new kind of 

Lagrangian symmetry defined, related to the traces of powers of a 2n x 2 n  matrix. 
When C vanishes, the traces of the powers of V are twice (see appendix) those of the 
corresponding powers of A, 

A = - A W - ' .  (4.20) 

Consider now S t Z 0 .  Equation (2.6) is modified but may still be written in the 

i j '  = - q'& (4.2 I)* 

same way for a variable iji defined by 

The variation of the Lagrangian SL is 

SL= - S q ' +  L - - $  Sr - ( S q ' - q ' S t ) w : , ( i j J - F J )  (:: ( :; ) ) (4.22)* 

instead of expression (4.2). One can define 8q' by 

8q' = Sq' - q'st (4.23) 

and everything can now be restated in terms of f j '  and & I ,  and the same results hold. 

J = 1,54, a = 1 , 2  ,..., 2n, (4.24) 

It is straightforward to prove that 
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is also a constant of motion where 

5' = 7'1 5"" = d q ' / d t  (4.25) 

using (4.10), (4.1 I),  (2.6) and (4.25) (because 6" satisfies 

d["/dt - t b a r / a X b  = 0). (4.26) 

One last remark. If instead of starting from a usual (acceleration independent) 
Lagrangian L(q', q', t )  one is given an acceleration dependent Lagrangian i ( q f ,  q' ,  i ' ,  1 )  
differing from L by a total time derivative, its variation S i  will differ from 6L  by a 
total time derivative and the conclusions remain unchanged. 

5. Example 

The example is devoted to illustrating the third kind of Lagrangian symmetry defined 
in this paper (examples for Noetherian and s-equivalence symmetry transformation 
can be found in Hill (1951), Hojman and Harleston (1981) and Hojman and G6mez 
(1984)). 

Consider the Lagrangian for the two-dimensional harmonic oscillator 

2 
L = f  2 (q f -q f ) .  

1 = I  

The equations of motion are 

ql + qj = 0, i =  1,2. (5.2) 

The equation of variations is 

(@dt)(;i/dt)7' + 7' = 0. (5.3) 

A solution to (5.3) is 

7 i  = Eq' 

where E is the conserved energy 
2 

E = f  (qf+q:).  
, = I  

The variation of the Lagrangian 6L  can be readily constructed, 

The Euler-Lagrange derivatives of 6L are 

GiSL= Ct,(g + 41) + ( - A ,  + Ct,>(ij +e) 

(5.4)* 

(5.5) 

(5.6)* 

(5.7)* 

where 

A, = 2E6, 4- 91% + 4q,, (5.8) 

= qlq] - qJqt* (5.9) 
Note that G,6L vanishes if both (5.2) and its time derivative hold. 



2408 S Hojman 

Furthermore, B can be constructed, 

(5.10) B.. = q q. - 4.  
11 I 1  J4i9 

and therefore (+ is 

Let us now turn our attention to L. The matrices W and T are 

The matrix H is 

(5.1 1) 

(5.12) 

(5.13) 

(5.14) 

and therefore V can be written as 

(5.15) 

It is straightforward to check that the traces of all powers of V are constants of 

Tr V k  =constant, k = 1 , 2 ,  . . .  . (5.16) 

We have then showed that transformation (5.4) which is a solution to (2.6) is neither 
a Noetherian symmetry nor an  s-equivalence one and therefore belongs to the third 
kind of Lagrangian symmetries defined in this paper. Constants of motion (5.16) can 
be associated to it. 

4 4 1  - 4JSl 2E',l + qtq1 + 4141 

motion, 

6. Conclusions and outlook 

We have introduced a new definition of Lagrangian symmetry in such a way that the 
sets of symmetry transformations of Lagrangians and their equations of motion 
coincide. Conservation laws can be associated to this newly defined Lagrangian 
symmetry much in the same way as Noetherian and s-equivalence symmetry transforma- 
tions. 

The constant of motion C'(q', q ' ,  t ) ,  

c'= ( ac / aq ' )V1  +(ac/aq') d s ' l d t ,  

where C is a constant of motion for a given problem, and V 1 ( q J ,  qJ,  t )  satisfies (2.6) 
for the same problem, constitutes a generalisation of Poisson's theorem for constants 
of motion. 

The new concept of Lagrangian symmetry may be used in the construction of gauge 
theories which are usually built considering Noetherian symmetries only. 

The conservation laws obtained may be used to integrate nonlinear systems much 
in the same way as the Lax method (Lax 1968) is used. This procedure will have the 
advantage of having a way of linking symmetries and the conserved traces of powers 
of matrices. 
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Finally, it would be interesting to compare the methods and  results of this work 
with those of Crampin (1983), Prince (1983) and Sarlet (1983). 

Appendix 

Equation (2.14) is equivalent to (2.18) 

If (2.14) holds, it is straightforward to prove that (2.18) is satisfied. The converse is 
not so obvious. Assume that 

G,A(qJ, q', q', t) = 0. 

A = -(d/dtlf(q ' ,  4 ' 9  t )  

('41) 

To prove that 

(A21 

we proceed by inspecting G,A. Because (Al)  is an identity, the coefficients of the 
highest derivatives of q '  in GIA must vanish identically. The highest derivatives of q '  
in G,A are 'q" and the vanishing of its coefficients implies that A is linear in q ' ,  i.e. 

a'A/dq'  aqJ = o (A31 

A = A,(qJ, q', t )q '  +A,(q', QJ, t ) .  (A41 
Now, the highest derivative of q '  left in G,A is q ' ,  and its coefficient must vanish, i.e. 

aA, /aqJ - aA,/aqi = o (A51 

A,  = dg(q, 4, t l l a q ' .  

or 

or 

Now, vanishing of the coefficient of q k  in G,A implies 

where 

Note that 

where 

therefore. 

ahk/a4'  = 0, i.e. hk = h,(q, t )  

Now vanishing of G,A implies 

dp laq '  = dh,/dt ,  

i.e. 

ah,/dq' = ah,/aq'  and dh,,/dq' = ah,/at, 
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or 
h, = w 4 ,  t ) /aq ' ,  

or 

ho = W q ,  t ) / a t ,  

ag ag dh 
' -a& a t  d t  

A --$+-+--. dh 
P = ;  

Therefore 
A=A,~j '+A,=(d /d t ) (g+h)E -df/dt, 

i.e. (2.18) implies (2.14). 

Proof of (4.14) 

To prove (4.14) it is convenient to consider the identity 

(a/ax")Ti/dr = (Ti/dt) a/axa +f.", a/axb. 

Now, by definition (4.13) 

dUab/df = (;i/dt)(ala/axb - alb/aXa) 

or, using identity (A16), 

Now, with the help of (4.10) and definition (4.13) one gets (4.14). 

Proof that H defined by (4.17) satisfies (4.14) 

The proof is straightforward when definition (4.17) is considered together with (3.15), 
(3.16), (3.17), (3.23), (3.24) and (4.1 1). 

If C vanishes, then Tr Vk = 2 Tr A h  

- B  - A  
u = ( A  0 )  

and Vis  

It is straightforward to prove that 

so that 
Tr Vk = 2Tr Ak.  ('422) 

The explicit form of the matrices Yk is irrelevant for this proof. 

Why (4.21) works for (2.6) 

Consider 

4'l = 4 '  +&r/'(s', s', t ) ,  t' = t + E r / O ( q J ,  $, t ) ,  (A23a, b )  
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instead of transformation (2.5). Then one gets 

instead of (2.6), because of 

d /d t '=  ( 1  -dTO/dt)  a/dt .  

It is straightforward to see that (A24) is equivalent to (2.6) written for f i  defined 
by (4.21) with 61 = 77'. 

Derivation of (5.4), (5.6) and (5.7) 

Consider (2.6); it is straightforward to prove that if 77' is a solution of (2.6), then Kq'  
is also a solution of (2.6) if K is a constant of motion, i.e. if 

d K / d t  = 0. ('426) 

For (5.3), 77; = q' is a solution. Therefore 77' = Eq' is also a solution. Equations (5.6) 
and (5.7) can be readily obtained from definitions (2.13) and (2.16) respectively. 

Detailed derivation of (4.22) and (4.2) 

Consider the identity 

Add and subtract (d/dt)(aL/aq')Sq' to the definition (2.13) for SL, use expressions 
(2.22), (2.23) and (2.24) for (d/dt)(aL/&j') -aL/dq' and identity (A27) to get (4.22) for 
6L. Take S t = O  and get (4.2). 
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